Monday, August 15, 2022
HomeNatureThe Higgs boson turns ten

The Higgs boson turns ten


  • ATLAS Collaboration et al. Statement of a brand new particle within the seek for the Commonplace Mannequin Higgs boson with the ATLAS detector on the LHC. Phys. Lett. B 716, 1–29 (2012). This text experiences the invention of the Higgs boson by the ATLAS Collaboration.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Statement of a brand new boson at a mass of 125 GeV with the CMS experiment on the LHC. Phys. Lett. B 716, 30–61 (2012). This text experiences the invention of the Higgs boson by the CMS Collaboration.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Quigg, C. & Shrock, R. Gedanken worlds with out Higgs: QCD-induced electroweak symmetry breaking. Phys. Rev. D 79, 096002 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Englert, F. & Brout, R. Damaged symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964). Englert and Brout clarify how gauge bosons can purchase a mass by way of their interplay with scalar fields.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Higgs, P. W. Damaged symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).

    ADS 
    Article 

    Google Scholar
     

  • Higgs, P. W. Damaged symmetries and the lots of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964). Higgs explains how gauge bosons can purchase a mass by way of their interplay with scalar fields.

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Guralnik, G. S., Hagen, C. R. & Kibble, T. W. B. International conservation legal guidelines and massless particles. Phys. Rev. Lett. 13, 585–587 (1964).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kibble, T. W. B. Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554–1561 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Glashow, S. L. Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).

    Article 

    Google Scholar
     

  • Salam, A. & Ward, J. C. Electromagnetic and weak interactions. Phys. Lett. 13, 168–171 (1964).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Weinberg, S. A mannequin of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).

    ADS 
    Article 

    Google Scholar
     

  • Yukawa, H. On the interplay of elementary particles I. Proc. Phys. Math. Soc. Jap. 17, 48–57 (1935).

    MATH 

    Google Scholar
     

  • Durr, S. et al. Ab-Initio willpower of sunshine hadron lots. Science 322, 1224–1227 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • ATLAS Collaboration. Statement of Higgs boson manufacturing in affiliation with a prime quark pair on the LHC with the ATLAS detector. Phys. Lett. B 784, 173–191 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Statement of (tbar{t}) H manufacturing. Phys. Rev. Lett. 120, 231801 (2018).

  • ATLAS Collaboration et al. Measurements of WH and ZH manufacturing within the (Hto bbar{b}) decay channel in pp collisions at 13 TeV with the ATLAS detector. Eur. Phys. J. C 81, 178 (2021).

  • CMS Collaboration et al. Statement of Higgs boson decay to backside quarks. Phys. Rev. Lett. 121, 121801 (2018).

    ADS 
    Article 

    Google Scholar
     

  • ATLAS Collaboration et al. Measurements of Higgs boson manufacturing cross-sections within the H→τ+τ− decay channel in pp collisions at s=13TeV with the ATLAS detector. Preprint at https://arxiv.org/abs/2201.08269 (2022).

  • CMS Collaboration et al. Measurement of the inclusive and differential Higgs boson manufacturing cross sections within the decay mode to a pair of τ leptons in pp collisions at s=13 TeV. Phys. Rev. Lett. 128, 081805 (2022).

    ADS 
    Article 

    Google Scholar
     

  • CMS Collaboration. CMS technical design report, quantity II: physics efficiency. J. Phys. G 34, 995–1579 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration et al. Anticipated efficiency of the ATLAS experiment – detector, set off and physics. Preprint at https://arxiv.org/abs/0901.0512 (2008).

  • Cacciari, M. & Salam, G. P. Pileup subtraction utilizing jet areas. Phys. Lett. B 659, 119–126 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bertolini, D., Harris, P., Low, M. & Tran, N. Pileup per particle identification. J. Excessive Energ. Phys. 10, 059 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Marzani, S., Soyez, G. and Spannowsky, M. Trying Inside Jets: An Introduction to Jet Substructure and Boosted-object Phenomenology Vol. 958 (Springer, 2019); https://doi.org/10.1007/978-3-030-15709-8

  • Visitor, D., Cranmer, Ok. & Whiteson, D. Deep studying and its software to LHC physics. Ann. Rev. Nucl. Half. Sci. 68, 161–181 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gao, J., Harland-Lang, L. & Rojo, J. The construction of the proton within the LHC precision period. Phys. Rep. 742, 1–121 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Ball, R. D. et al. The PDF4LHC21 mixture of worldwide PDF suits for the LHC Run III. Preprint at https://arxiv.org/abs/2203.05506 (2022).

  • Anastasiou, C., Duhr, C., Dulat, F., Herzog, F. & Mistlberger, B. Higgs boson gluon-fusion manufacturing in QCD at three loops. Phys. Rev. Lett. 114, 212001 (2015). Calculation of Higgs boson manufacturing likelihood bearing in mind the very best variety of quantum fluctuations potential as we speak.

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Heinrich, G. Collider physics on the precision. Frontier, Phys. Rep. 922, 1–69 (2021).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • de Florian, D. et al. Handbook of LHC Higgs cross sections: 4. Deciphering the character of the Higgs sector. Preprint at https://arxiv.org/abs/1610.07922 (2016). This report summarizes the worldwide theoretical data of Higgs boson manufacturing and decay.

  • Buckley, A. et al. Normal-purpose occasion mills for LHC physics. Phys. Rep. 504, 145–233 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Campbell, J. M. et al. Occasion mills for high-energy physics experiments. Preprint at https://arxiv.org/abs/2203.11110 (2022).

  • Dainese, A. et al (eds) Report on the Physics on the HL-LHC, and Views for the HE-LHC CERN Yellow Stories: Monographs Vol. 7/2019 (CERN, 2019); https://doi.org/10.23731/CYRM-2019-007

  • Abada, A. et al. FCC-ee: The Lepton Collider: future round collider conceptual design report quantity 2. Eur. Phys. J. ST 228, 261–623 (2019).

    Article 

    Google Scholar
     

  • Roloff, P., Franceschini, R., Schnoor, U. & Wulzer, A. The Compact Linear e+e Collider (CLIC): physics potential. Preprint at https://arxiv.org/abs/1812.07986 (2018).

  • Baer, H. et al. The Worldwide Linear Collider Technical Design Report – Quantity 2: Physics. Preprint at https://arxiv.org/abs/1306.6352 (2013).

  • CEPC Examine Group. CEPC Conceptual Design Report: Quantity 2 – physics & detector. Preprint at https://arxiv.org/abs/1811.10545 (2018).

  • Bai, M. et al. C3: A “cool” path to the Higgs boson and past. Preprint at https://arxiv.org/abs/2110.15800 (2021).

  • 2020 Replace of the European Technique for Particle Physics (Brochure) Technical Report (CERN, 2020); https://doi.org/10.17181/CERN.JSC6.W89E

  • de Blas, J. et al. Higgs boson research at future particle colliders. J. Excessive Energ. Phys. 1, 139 (2020).

    ADS 
    Article 

    Google Scholar
     

  • ATLAS Collaboration. A seek for the dimuon decay of the Commonplace Mannequin Higgs boson with the ATLAS detector. Phys. Lett. B 812, 135980 (2021).

    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Proof for Higgs boson decay to a pair of muons. J. Excessive Energ. Phys. 1, 148 (2021).

    ADS 

    Google Scholar
     

  • Bishara, F., Haisch, U., Monni, P. F. & Re, E. Constraining light-quark Yukawa couplings from Higgs distributions. Phys. Rev. Lett. 118, 121801 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Soreq, Y., Zhu, H. X. & Zupan, J. Mild quark Yukawa couplings from Higgs kinematics. J. Excessive Energ. Phys. 12, 045 (2016).

    ADS 
    Article 

    Google Scholar
     

  • André, Ok. D. J. et al. An experiment for electron-hadron scattering on the LHC. Eur. Phys. J. C 82, 40 (2022).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration. Direct constraint on the Higgs-charm coupling from a seek for Higgs boson decays into appeal quarks with the ATLAS detector. Preprint at https://arxiv.org/abs/2201.11428 (2022).

  • CMS Collaboration. Seek for Higgs boson decay to a appeal quark-antiquark pair in proton-proton collisions at (sqrt{s}) = 13 TeV. Preprint at https://arxiv.org/abs/2205.05550 (2022).

  • d’Enterria, D., Poldaru, A. & Wojcik, G. Measuring the electron Yukawa coupling through resonant s-channel Higgs manufacturing at FCC-ee. Eur. Phys. J. Plus 137, 201 (2022).

    Article 

    Google Scholar
     

  • Delaunay, C., Ozeri, R., Perez, G. & Soreq, Y. Probing atomic Higgs-like forces on the precision frontier. Phys. Rev. D 96, 093001 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Flambaum, V. V., Geddes, A. J. & Viatkina, A. V. Isotope shift, nonlinearity of King plots, and the seek for new particles. Phys. Rev. A 97, 032510 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McCullough, M. An oblique model-dependent probe of the Higgs self-coupling. Phys. Rev. D 90, 015001 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Abada, A. et al. FCC-hh: the Hadron Collider: future round collider conceptual design report quantity 3. Eur. Phys. J. ST 228, 755–1107 (2019).

    Article 

    Google Scholar
     

  • CEPC Examine Group. CEPC Conceptual Design Report: Quantity 1 – accelerator. Preprint at https://arxiv.org/abs/1809.00285 (2018).

  • Franceschini, R. & Greco, M. Higgs and BSM physics on the future muon collider. Symmetry 13, 851 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Delahaye, J. P. et al. Muon colliders. Preprint at https://arxiv.org/abs/1901.06150 (2019).

  • Caola, F. & Melnikov, Ok. Constraining the Higgs boson width with ZZ manufacturing on the LHC. Phys. Rev. D 88, 054024 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Campbell, J. M., Ellis, R. Ok. & Williams, C. Bounding the Higgs width on the LHC utilizing full analytic outcomes for gg- > ee+μμ+. J. Excessive Power Phys. 4, 060 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration. Constraints on off-shell Higgs boson manufacturing and the Higgs boson whole width in (ZZto 4ell ) and (ZZto 4ell ) remaining states with the ATLAS detector. Phys. Lett. B 786, 223–244 (2018).

  • CMS Collaboration. First proof for off-shell manufacturing of the Higgs boson and measurement of its width. Preprint at https://arxiv.org/abs/2202.06923 (2022).

  • ATLAS Collaboration. Measurement of the related manufacturing of a Higgs boson decaying into b-quarks with a vector boson at excessive transverse momentum in pp collisions at (sqrt{s}=13) TeV with the ATLAS detector. Phys. Lett. B 816, 136204 (2021).

  • CMS Collaboration et al. Inclusive seek for extremely boosted Higgs bosons decaying to backside quark-antiquark pairs in proton-proton collisions at (sqrt{s}=13) TeV. J. Excessive Power Phys. 12, 085 (2020).

  • Kaplan, D. B. & Georgi, H. SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B 136, 183–186 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Fayet, P. Supersymmetry and weak, electromagnetic and robust interactions. Phys. Lett. B 64, 159 (1976).

    ADS 
    Article 

    Google Scholar
     

  • Fayet, P. Spontaneously damaged supersymmetric theories of weak, electromagnetic and robust interactions. Phys. Lett. B 69, 489 (1977).

    ADS 
    Article 

    Google Scholar
     

  • Dimopoulos, S. & Georgi, H. Softly damaged supersymmetry and SU(5). Nucl. Phys. B 193, 150–162 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. The Hierarchy downside and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Randall, L. & Sundrum, R. A Giant mass hierarchy from a small further dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Randall, L. & Sundrum, R. An Different to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Graham, P. W., Kaplan, D. E. & Rajendran, S. Cosmological leisure of the electroweak scale. Phys. Rev. Lett. 115, 221801 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Arkani-Hamed, N. et al. Fixing the hierarchy downside at reheating with numerous levels of freedom. Phys. Rev. Lett. 117, 251801 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Giudice, G. F., McCullough, M. & You, T. Self-organised localisation. J. Excessive Energ. Phys. 10, 093 (2021).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Arvanitaki, A., Dimopoulos, S., Gorbenko, V., Huang, J. & Van, Ok. Tilburg, A small weak scale from a small cosmological fixed. J. Excessive. Power Phys. 05, 071 (2017).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Arkani-Hamed, N., D’Agnolo, R. T. & Kim, H. D. Weak scale as a set off. Phys. Rev. D 104, 095014 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).

    CAS 

    Google Scholar
     

  • Cohen, A. G., Kaplan, D. B. & Nelson, A. E. Progress in electroweak baryogenesis. Ann. Rev. Nucl. Half. Sci. 43, 27–70 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Caprini, C. et al. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological section transitions. J. Cosmol. Astropart. Phys. 04, 001 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Caprini, C. et al. Detecting gravitational waves from cosmological section transitions with LISA: an replace. J. Cosmol. Astropart. Phys. 03, 024 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Silveira, V. & Zee, A. Scalar Phantoms. Phys. Lett. B 161, 136–140 (1985).

    ADS 
    Article 

    Google Scholar
     

  • Burgess, C. P., Pospelov, M. & ter Veldhuis, T. The minimal mannequin of nonbaryonic darkish matter: a singlet scalar. Nucl. Phys. B 619, 709–728 (2001).

    ADS 
    Article 

    Google Scholar
     

  • McDonald, J. Gauge singlet scalars as chilly darkish matter. Phys. Rev. D 50, 3637–3649 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Patt, B. & Wilczek, F. Higgs-field portal into hidden sectors. Preprint at https://arxiv.org/abs/hep-ph/0605188 (2006).

  • Barr, S. M. & Zee, A. A brand new strategy to the electron-muon mass ratio. Phys. Rev. D 15, 2652 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bjorken, J. D. & Weinberg, S. A mechanism for nonconservation of muon quantity. Phys. Rev. Lett. 38, 622 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Babu, Ok. S. & Nandi, S. Pure fermion mass hierarchy and new alerts for the Higgs boson. Phys. Rev. D 62, 033002 (2000).

    ADS 
    Article 

    Google Scholar
     

  • de Gouvêa, A. Neutrino mass fashions. Ann. Rev. Nucl. Half. Sci. 66, 197–217 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cabibbo, N., Maiani, L., Parisi, G. & Petronzio, R. Bounds on the fermions and Higgs boson lots in grand unified theories. Nucl. Phys. B 158, 295–305 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Hung, P. Q. Vacuum instability and new constraints on fermion lots. Phys. Rev. Lett. 42, 873 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Lindner, M. Implications of triviality for the Commonplace Mannequin. Z. Phys. C 31, 295 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Degrassi, G. et al. Higgs mass and vacuum stability within the Commonplace Mannequin at NNLO. J. Excessive Power Phys. 8, 098 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Buttazzo, D. et al. Investigating the near-criticality of the Higgs boson. J. Excessive Power Phys. 12, 089 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bezrukov, F. L. & Shaposhnikov, M. The Commonplace Mannequin Higgs boson because the inflaton. Phys. Lett. B 659, 703–706 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Particle Information Group et al. Evaluation of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020). This overview summarizes all present data of particle physics, each theoretical and experimental.

  • CMS Collaboration et al. Measurements of manufacturing cross sections of the Higgs boson within the four-lepton remaining state in proton–proton collisions at (sqrt{s}=13) TeV. Eur. Phys. J. C 81, 488 (2021).

  • ATLAS Collaboration. An in depth map of Higgs boson interactions by the ATLAS experiment ten years after the invention. Nature https://doi.org/10.1038/s41586-022-04893-w (2022). This text describes the present standing of our data of Higgs boson interactions, as measured by the ATLAS Collaboration.

  • CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the invention. Nature https://doi.org/10.1038/s41586-022-04892-x (2022). This text describes the present standing of our data of Higgs boson interactions, as measured by the CMS Collaboration.

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments