Liu, G. Y. & Sabatini, D. M. mTOR on the nexus of vitamin, progress, ageing and illness. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
Saxton, R. A. et al. Structural foundation for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53–58 (2016).
Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, Okay. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).
Buerger, C., DeVries, B. & Stambolic, V. Localization of Rheb to the endomembrane is essential for its signaling perform. Biochem. Biophys. Res. Commun. 344, 869–880 (2006).
Bar-Peled, L. et al. A Tumor suppressor advanced with GAP exercise for the Rag GTPases that sign amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).
Shen, Okay., Valenstein, M. L., Gu, X. & Sabatini, D. M. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J. Biol. Chem. 294, 2970–2975 (2019).
Shen, Okay. et al. Structure of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 556, 64–69 (2018).
Fox, H. L., Pham, P. T., Kimball, S. R., Jefferson, L. S. & Lynch, C. J. Amino acid results on translational repressor 4E-BP1 are mediated primarily by L-leucine in remoted adipocytes. Am. J. Physiol. 275, C1232–C1238 (1998).
Lynch, C. J., Fox, H. L., Fluctuate, T. C., Jefferson, L. S. & Kimball, S. R. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J. Cell. Biochem. 77, 234–251 (2000).
Dodd, Okay. M. & Tee, A. R. Leucine and mTORC1: a posh relationship. Am. J. Physiol. Endocrinol. Metab. 302, E1329–E1342 (2012).
Suryawan, A. et al. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am. J. Physiol. Endocrinol. Metab. 295, E868–E875 (2008).
Kim, J. S. et al. Sestrin2 inhibits mTORC1 by means of modulation of GATOR complexes. Sci. Rep. 5, 9502 (2015).
Chantranupong, L. et al. The Sestrins work together with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 9, 1–8 (2014).
Lee, J. H. et al. Sestrin as a suggestions inhibitor of TOR that stops age-related pathologies. Science 327, 1223–1228 (2010).
Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331–2336 (2015).
Wolfson, R. L. & Sabatini, D. M. The daybreak of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).
Piyankarage, S. C., Augustin, H., Grosjean, Y., Featherstone, D. E. & Shippy, S. A. Hemolymph amino acid evaluation of particular person Drosophila larvae. Anal. Chem. 80, 1201–1207 (2008).
Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 balances mobile amino acid provide with demand for protein synthesis by means of post-transcriptional management of ATF4. Cell Rep. 19, 1083–1090 (2017).
Wei, Y., Reveal, B., Cai, W. & Lilly, M. A. The GATOR1 advanced regulates metabolic homeostasis and the response to nutrient stress in Drosophila melanogaster. G3 (Bethesda) 6, 3859–3867 (2016).
Mirth, C. Okay., Nogueira Alves, A. & Piper, M. D. Turning meals into eggs: insights from dietary biology and developmental physiology of Drosophila. Curr. Opin. Insect Sci. 31, 49–57 (2019).
Wei, Y. & Lilly, M. A. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid hunger in Drosophila. Cell Demise Differ. 21, 1460–1468 (2014).
Wei, Y. et al. TORC1 regulators Iml1/GATOR1 and GATOR2 management meiotic entry and oocyte growth in Drosophila. Proc. Natl Acad. Sci. USA 111, E5670–E5677 (2014).
Senger, S. et al. The nucleoporin Seh1 varieties a posh with Mio and serves a necessary tissue-specific perform in Drosophila oogenesis. Growth 138, 2133–2142 (2011).
Iida, T. & Lilly, M. A. lacking oocyte encodes a extremely conserved nuclear protein required for the upkeep of the meiotic cycle and oocyte id in Drosophila. Growth 131, 1029–1039 (2004).
Park, A., Tran, T. & Atkinson, N. S. Monitoring meals choice in Drosophila by oligonucleotide tagging. Proc. Natl Acad. Sci. USA 115, 9020–9025 (2018).
Kumar, P. et al. Dietary characterization of apple as a perform of genotype. J. Meals Sci. Technol. 55, 2729–2738 (2018).
Feng, F., Li, M., Ma, F. & Cheng, L. Results of location inside the tree cover on carbohydrates, natural acids, amino acids and phenolic compounds within the fruit peel and flesh from three apple (Malus x domestica) cultivars. Hortic. Res. 1, 14019 (2014).
Ma, S. et al. Free amino acid composition of apple juices with potential for cider making as decided by UPLC-PDA. J. Inst. Brew. 124, 467–476 (2018).
US Division of Agriculture. Apples, uncooked, with pores and skin (consists of meals for USDA’s Meals Distribution Program). FoodData Central https://fdc.nal.usda.gov/fdc-app.html#/food-details/171688/vitamins (2019).
Hebert, M. et al. Single rapamycin administration induces extended downward shift in defended physique weight in rats. PLoS ONE 9, e93691 (2014).
Anisimov, V. N. et al. Rapamycin will increase lifespan and inhibits spontaneous tumorigenesis in inbred feminine mice. Cell Cycle 10, 4230–4236 (2011).
Pasha, M., Eid, A. H., Eid, A. A., Gorin, Y. & Munusamy, S. Sestrin2 as a novel biomarker and therapeutic goal for numerous ailments. Oxid. Med. Cell Longev. 2017, 3296294 (2017).
Becher, P. G. et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and growth. Funct. Ecol. 26, 822–828 (2012).
Becher, P. G. et al. Chemical signaling and bug attraction is a conserved trait in yeasts. Ecol. Evol. 8, 2962–2974 (2018).
Baumberger, J. P. A dietary research of bugs, with particular reference to microorganisms and their substrata. J. Exp. Zool. 28, 1–81 (1919).
Steck, Okay. et al. Inside amino acid state modulates yeast style neurons to help protein homeostasis in Drosophila. Elife 7, e31625 (2018).
Davie, Okay. et al. A single-cell transcriptome atlas of the ageing Drosophila mind. Cell 174, 982–998 (2018).
Zhang, T. et al. Mitf is a grasp regulator of the v-ATPase, forming a management module for mobile homeostasis with v-ATPase and TORC1. J. Cell Sci. 128, 2938–2950 (2015).
Bouche, V. et al. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy 12, 484–498 (2016).
Leib, D. E. & Knight, Z. A. Re-examination of dietary amino acid sensing reveals a GCN2-independent mechanism. Cell Rep. 13, 1081–1089 (2015).
Yang, Z. et al. A post-ingestive amino acid sensor promotes meals consumption in Drosophila. Cell Res. 28, 1013–1025 (2018).
Croset, V., Schleyer, M., Arguello, J. R., Gerber, B. & Benton, R. A molecular and neuronal foundation for amino acid sensing within the Drosophila larva. Sci. Rep. 6, 34871 (2016).
Kudow, N. et al. Choice for and studying of amino acids in larval Drosophila. Biol. Open 6, 365–369 (2017).
Maurin, A. C. et al. The GCN2 kinase biases feeding conduct to keep up amino acid homeostasis in omnivores. Cell Metab. 1, 273–277 (2005).
Ganguly, A. et al. A molecular and mobile context-dependent position for Ir76b in detection of amino acid style. Cell Rep. 18, 737–750 (2017).
Park, J. & Carlson, J. R. Physiological responses of the Drosophila labellum to amino acids. J. Neurogenet. 32, 27–36 (2018).
Bjordal, M., Arquier, N., Kniazeff, J., Pin, J. P. & Leopold, P. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete weight-reduction plan in Drosophila. Cell 156, 510–521 (2014).
Vargas, M. A., Luo, N., Yamaguchi, A. & Kapahi, P. A job for S6 kinase and serotonin in postmating dietary change and stability of vitamins in D. melanogaster. Curr. Biol. 20, 1006–1011 (2010).
Liu, Q. et al. Department-specific plasticity of a bifunctional dopamine circuit encodes protein starvation. Science 356, 534–539 (2017).
Ribeiro, C. & Dickson, B. J. Intercourse peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).
Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets permits intestine microbes to enhance copy and alter host behaviour. Nat. Commun. 11, 4236 (2020).
Ma, Z., Stork, T., Bergles, D. E. & Freeman, M. R. Neuromodulators sign by means of astrocytes to change neural circuit exercise and behavior. Nature 539, 428–432 (2016).
Kottmeier, R. et al. Wrapping glia regulates neuronal signaling velocity and precision within the peripheral nervous system of Drosophila. Nat. Commun. 11, 4491 (2020).
Otto, N. et al. The sulfite oxidase Shopper controls neuronal exercise by regulating glutamate homeostasis in Drosophila ensheathing glia. Nat. Commun. 9, 3514 (2018).
Mariyappa, D. et al. A novel transposable element-based authentication protocol for Drosophila cell traces. G3 (Bethesda) https://doi.org/10.1093/g3journal/jkab403 (2022).
Birsoy, Okay. et al. A vital position of the mitochondrial electron transport chain in cell proliferation is to allow aspartate synthesis. Cell 162, 540–551 (2015).
Chen, W. W., Freinkman, E., Wang, T., Birsoy, Okay. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).
Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G. & Levine, J. D. Specialised cells tag sexual and species id in Drosophila melanogaster. Nature 461, 987–991 (2009).
Karpowicz, P., Zhang, Y., Hogenesch, J. B., Emery, P. & Perrimon, N. The circadian clock gates the intestinal stem cell regenerative state. Cell Rep. 3, 996–1004 (2013).
He, L., Binari, R., Huang, J., Falo-Sanjuan, J. & Perrimon, N. In vivo research of gene expression with an enhanced dual-color fluorescent transcriptional timer. Elife https://doi.org/10.7554/eLife.46181 (2019).
Ni, J. Q. et al. Vector and parameters for focused transgenic RNA interference in Drosophila melanogaster. Nat. Strategies 5, 49–51 (2008).
Housden, B. E., Lin, S. & Perrimon, N. Cas9-based genome modifying in Drosophila. Strategies Enzymol. 546, 415–439 (2014).
Piper, M. D. et al. A holidic medium for Drosophila melanogaster. Nat. Strategies 11, 100–105 (2014).
Piper, M. D. W. et al. Matching dietary amino acid stability to the in silico-translated exome optimizes progress and copy with out value to lifespan. Cell Metab. 25, 1206 (2017).
Davis, R. W., Botstein, D. & Roth, J. R. Superior Bacterial Genetics (Chilly Spring Harbor Laboratory, 1980).
Wu, J. S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for dwell imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).
McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, Okay. & Davis, R. L. Spatiotemporal rescue of reminiscence dysfunction in Drosophila. Science 302, 1765–1768 (2003).