Tuesday, August 9, 2022
HomeNaturePulsed hydraulic-pressure-responsive self-cleaning membrane | Nature

Pulsed hydraulic-pressure-responsive self-cleaning membrane | Nature


  • Shannon, M. A. et al. Science and expertise for water purification within the coming many years. Nature 452, 301–310 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Werber, J. R., Osuji, C. O. & Elimelech, M. Supplies for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ronen, A., Walker, S. L. & Jassby, D. Electroconductive and electroresponsive membranes for water therapy. Rev. Chem. Eng. 32, 533–550 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Hou, X., Hu, Y. H., Grinthal, A., Khan, M. & Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519, 70–73 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, Okay. et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation. Nat. Commun. 11, 1097 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Web optimization, D. H. et al. Anti-fouling graphene-based membranes for efficient water desalination. Nat. Commun. 9, 683 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Yu, Q. & Zhang, Y. Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor. Nat. Commun. 10, 4860 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Zhu, X. & Jassby, D. Electroactive membranes for water therapy: enhanced therapy functionalities, power issues, and future challenges. Acc. Chem. Res. 52, 1177–1186 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Formoso, P., Pantuso, E., De Filpo, G. & Nicoletta, F. P. Electro-conductive membranes for permeation enhancement and fouling mitigation: a brief evaluation. Membranes 7, 115219 (2017).

    Article 

    Google Scholar
     

  • Zhang, Q. Y. et al. Interlaced CNT electrodes for bacterial fouling discount of microfiltration membranes. Environ. Sci. Technol. 51, 9176–9183 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. Y. & Vecitis, C. D. Conductive CNT-PVDF membrane for capacitive natural fouling discount. J. Membr. Sci. 459, 143–156 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kuscer, D. et al. Built-in piezoelectric vibration system for fouling mitigation in ceramic filtration membranes. J. Membr. Sci. 540, 277–284 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Endowing piezoelectric and anti-fouling properties by immediately poling β-phase PVDF membranes with inexperienced diluents. AIP Adv. 9, 115219 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Zhao, Y., Gu, Y. N. & Gao, G. D. Piezoelectricity induced by pulsed hydraulic strain allows in situ membrane demulsification and oil/water separation. Water Res. 215, 118245 (2022).

    CAS 
    Article 

    Google Scholar
     

  • You, Y. M. et al. An organic-inorganic perovskite ferroelectric with giant piezoelectric response. Science 357, 306–309 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, R., Tang, E., Yang, G. & Han, Y. Experimental analysis on dynamic response of PZT-5H beneath affect load. Ceram. Int. 46, 2868–2876 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Park, D. Y. et al. Self-powered real-time arterial pulse monitoring utilizing ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017).

    Article 

    Google Scholar
     

  • Yan, Y., Zhou, J. E., Maurya, D., Wang, Y. U. & Priya, S. Big piezoelectric voltage coefficient in grain-oriented modified PbTiO3 materials. Nat. Commun. 7, 13089 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for power conversion and piezotronics. Nature 514, 470–474 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mao, H. et al. Self-cleaning piezoelectric membrane for oil-in-water separation. ACS Appl. Mater. Interfaces 10, 18093–18103 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, B., Dong, Y., Ma, N. & Du, P. Formation of sol–gel in situ derived BTO/NZFO composite ceramics with appreciable dielectric and magnetic properties. J. Am. Ceram. Soc. 96, 1240–1247 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Huan, Y., Wang, X., Fang, J. & Li, L. Grain dimension results on piezoelectric properties and area construction of BaTiO3 ceramics ready by two-step sintering. J. Am. Ceram. Soc. 96, 3369–3371 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ghosh, D. et al. Area wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Funct. Mater. 24, 885–896 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Williams, J. B., Clarkson, C., Mant, C., Drinkwater, A. & Might, E. Fats, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms. Water Res. 46, 6319–6328 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, R. et al. Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances. J. Mater. Chem. A 4, 7892–7902 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liang, Z., Yan, C.-F., Rtimi, S. & Bandara, J. Piezoelectric supplies for catalytic/photocatalytic elimination of pollution: current advances and outlook. Appl. Catal. B Environ. 241, 256–269 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yi, Q. et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton response with enhanced REDOX exercise within the atmosphere. Environ. Sci. Technol. 53, 9725–9733 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wu, Y., Zaiden, N., Liu, X., Mukherjee, M. & Cao, B. Responses of exogenous micro organism to soluble extracellular polymeric substances in wastewater: a mechanistic research and implications on bioaugmentation. Environ. Sci. Technol. 54, 6919–6928 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pradel, Okay. C., Sohn, Okay. & Huang, J. Cross-flow purification of nanowires. Angew. Chem. Int. Ed. 50, 3412–3416 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Asatekin, A. & Mayes, A. M. Oil trade wastewater therapy with fouling resistant membranes containing amphiphilic comb copolymers. Environ. Sci. Technol. 43, 4487–4492 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tangsubkul, N., Parameshwaran, Okay., Lundie, S., Fane, A. G. & Waite, T. D. Environmental life cycle evaluation of the microfiltration course of. J. Membr. Sci. 284, 214–226 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Lan, Y., Groenen-Serrano, Okay., Coetsier, C. & Causserand, C. Nanofiltration performances after membrane bioreactor for hospital wastewater therapy: fouling mechanisms and the quantitative hyperlink between secure fluxes and the water matrix. Water Res. 146, 77–87 (2018).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments