Wednesday, August 10, 2022
HomeNatureNon-Hermitian morphing of topological modes

Non-Hermitian morphing of topological modes


  • Haldane, F. D. M. Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Kosterlitz, J. M. Nobel Lecture: Topological defects and section transitions. Rev. Mod. Phys. 89, 040501 (2017).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian methods. Phys. Rev. Lett. 121, 086803 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Part-dependent chiral transport and efficient non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).


    Google Scholar
     

  • Kunst, F. Ok., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian methods. Phys. Rev. Lett. 121, 026808 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian sturdy edge states in a single dimension: anomalous localization and eigenspace condensation at distinctive factors. Phys. Rev. B 97, 121401 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical methods. Nat. Rev. Phys. 1, 281–294 (2019).

    Article 

    Google Scholar
     

  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Sturdy optical delay traces with topological safety. Nat. Phys. 7, 907–912 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Xu, C., Chen, Z.-G., Zhang, G., Ma, G. & Wu, Y. Multi-dimensional wave steering with higher-order topological phononic crystal. Sci. Bull. 66, 1740–1745 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Harari, G. et al. Topological insulator laser: concept. Science 359, eaar4003 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological safety of biphoton states. Science 362, 568–571 (2018).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological supply of quantum mild. Nature 561, 502–506 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Özdemir, Ş. Ok., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Wang, Ok. et al. Producing arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wang, Ok., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Gao, T. et al. Commentary of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding round non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. Distinctive nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Tang, W., Ding, Ok. & Ma, G. Direct measurement of topological properties of an distinctive parabola. Phys. Rev. Lett. 127, 034301 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tang, W., Ding, Ok. & Ma, G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Preprint at https://doi.org/10.48550/arXiv.2112.00982 (2022).

  • Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Commentary of non-Hermitian topology and its bulk–edge correspondence in an lively mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Acoustic non-Hermitian pores and skin impact from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of sunshine. Science 368, 311–314 (2020).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tune, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in actual house. Phys. Rev. Lett. 123, 246801 (2019).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Longhi, S. Probing non-Hermitian pores and skin impact and non-Bloch section transitions. Phys. Rev. Res. 1, 023013 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zhu, W., Teo, W. X., Li, L. & Gong, J. Delocalization of topological edge states. Phys. Rev. B 103, 195414 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Okuma, N., Kawabata, Ok., Shiozaki, Ok. & Sato, M. Topological origin of non-Hermitian pores and skin results. Phys. Rev. Lett. 124, 086801 (2020).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, Ok., Yang, Z. & Fang, C. Correspondence between winding numbers and pores and skin modes in non-Hermitian methods. Phys. Rev. Lett. 125, 126402 (2020).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Xiao, L. et al. Commentary of non-Bloch parity-time symmetry and distinctive factors. Phys. Rev. Lett. 126, 230402 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Sounas, D. L. & Alù, A. Non-reciprocal photonics primarily based on time modulation. Nat. Photonics 11, 774–783 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Nassar, H. et al. Nonreciprocity in acoustic and elastic supplies. Nat. Rev. Mater. 5, 667–685 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 8, 406–411 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, W. et al. Low-threshold topological nanolasers primarily based on the second-order nook state. Gentle: Sci. Appl. 9, 109 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Teo, W. X., Zhu, W. & Gong, J. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kim, H.-R. et al. Multipolar lasing modes from topological nook states. Nat. Commun. 11, 5758 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Shao, Z.-Ok. et al. A high-performance topological bulk laser primarily based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode concept for the Fano resonance in optical resonators. J. Decide. Soc. Am. A 20, 569 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent good absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments