Haldane, F. D. M. Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).
Kosterlitz, J. M. Nobel Lecture: Topological defects and section transitions. Rev. Mod. Phys. 89, 040501 (2017).
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian methods. Phys. Rev. Lett. 121, 086803 (2018).
McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Part-dependent chiral transport and efficient non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).
Kunst, F. Ok., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian methods. Phys. Rev. Lett. 121, 026808 (2018).
Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian sturdy edge states in a single dimension: anomalous localization and eigenspace condensation at distinctive factors. Phys. Rev. B 97, 121401 (2018).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical methods. Nat. Rev. Phys. 1, 281–294 (2019).
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Sturdy optical delay traces with topological safety. Nat. Phys. 7, 907–912 (2011).
Xu, C., Chen, Z.-G., Zhang, G., Ma, G. & Wu, Y. Multi-dimensional wave steering with higher-order topological phononic crystal. Sci. Bull. 66, 1740–1745 (2021).
Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).
Harari, G. et al. Topological insulator laser: concept. Science 359, eaar4003 (2018).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological safety of biphoton states. Science 362, 568–571 (2018).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological supply of quantum mild. Nature 561, 502–506 (2018).
Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).
Özdemir, Ş. Ok., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).
Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).
Wang, Ok. et al. Producing arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).
Wang, Ok., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Gao, T. et al. Commentary of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).
Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding round non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).
Tang, W. et al. Distinctive nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).
Tang, W., Ding, Ok. & Ma, G. Direct measurement of topological properties of an distinctive parabola. Phys. Rev. Lett. 127, 034301 (2021).
Tang, W., Ding, Ok. & Ma, G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Preprint at https://doi.org/10.48550/arXiv.2112.00982 (2022).
Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Commentary of non-Hermitian topology and its bulk–edge correspondence in an lively mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).
Zhang, L. et al. Acoustic non-Hermitian pores and skin impact from twisted winding topology. Nat. Commun. 12, 6297 (2021).
Weidemann, S. et al. Topological funneling of sunshine. Science 368, 311–314 (2020).
Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Tune, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in actual house. Phys. Rev. Lett. 123, 246801 (2019).
Longhi, S. Probing non-Hermitian pores and skin impact and non-Bloch section transitions. Phys. Rev. Res. 1, 023013 (2019).
Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).
Zhu, W., Teo, W. X., Li, L. & Gong, J. Delocalization of topological edge states. Phys. Rev. B 103, 195414 (2021).
Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Okuma, N., Kawabata, Ok., Shiozaki, Ok. & Sato, M. Topological origin of non-Hermitian pores and skin results. Phys. Rev. Lett. 124, 086801 (2020).
Zhang, Ok., Yang, Z. & Fang, C. Correspondence between winding numbers and pores and skin modes in non-Hermitian methods. Phys. Rev. Lett. 125, 126402 (2020).
Xiao, L. et al. Commentary of non-Bloch parity-time symmetry and distinctive factors. Phys. Rev. Lett. 126, 230402 (2021).
Sounas, D. L. & Alù, A. Non-reciprocal photonics primarily based on time modulation. Nat. Photonics 11, 774–783 (2017).
Nassar, H. et al. Nonreciprocity in acoustic and elastic supplies. Nat. Rev. Mater. 5, 667–685 (2020).
Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).
Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 8, 406–411 (2014).
Zhang, W. et al. Low-threshold topological nanolasers primarily based on the second-order nook state. Gentle: Sci. Appl. 9, 109 (2020).
Teo, W. X., Zhu, W. & Gong, J. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).
Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).
Kim, H.-R. et al. Multipolar lasing modes from topological nook states. Nat. Commun. 11, 5758 (2020).
Shao, Z.-Ok. et al. A high-performance topological bulk laser primarily based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).
Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode concept for the Fano resonance in optical resonators. J. Decide. Soc. Am. A 20, 569 (2003).
Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent good absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).