Sunday, May 22, 2022
HomeNatureLife histories of myeloproliferative neoplasms inferred from phylogenies

Life histories of myeloproliferative neoplasms inferred from phylogenies


  • 1.

    ICGC/TCGA Pan-Most cancers Evaluation of Complete Genomes Consortium. Pan-cancer evaluation of complete genomes. Nature 578, 82–93 (2020).

    ADS 

    Google Scholar
     

  • 2.

    Gerstung, M. et al. The evolutionary historical past of two,658 cancers. Nature 578, 122–128 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Mitchell, T. J. et al. Timing the landmark occasions within the evolution of clear cell renal cell most cancers: TRACERx Renal. Cell 173, 611–623.e17 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Radivoyevitch, T., Hlatky, L., Landaw, J. & Sachs, R. Ok. Quantitative modeling of power myeloid leukemia: insights from radiobiology. Blood 119, 4363–4371 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Lee-Six, H. et al. The panorama of somatic mutation in regular colorectal epithelial cells. Nature 574, 532–537 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Brunner, S. F. et al. Somatic mutations and clonal dynamics in wholesome and cirrhotic human liver. Nature 574, 538–542 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Moore, L. et al. The mutational panorama of regular human endometrial epithelium. Nature 580, 640–646 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Martincorena, I. et al. Excessive burden and pervasive optimistic number of somatic mutations in regular human pores and skin. Science 348, 880–886 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated most cancers drivers. Nature 565, 312–317 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Genovese, G. et al. Clonal hematopoiesis and blood-cancer threat inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Jaiswal, S. et al. Age-related clonal hematopoiesis related to antagonistic outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Xie, M. et al. Age-related mutations related to clonal hematopoietic enlargement and malignancies. Nat. Med. 20, 1472–1478 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Younger, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in wholesome adults. Nat. Commun. 7, 12484 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Abelson, S. et al. Prediction of acute myeloid leukaemia threat in wholesome people. Nature 559, 400–404 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Vainchenker, W. & Kralovics, R. Genetic foundation and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 129, 667–679 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Grinfeld, J. et al. Classification and personalised prognosis in myeloproliferative neoplasms. N. Engl. J. Med. 379, 1416–1430 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Lee-Six, H. et al. Inhabitants dynamics of regular human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Abascal, F. et al. Somatic mutation landscapes at single-molecule decision. Nature 593, 405–410 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Mitchell, E. et al. Clonal dynamics of haematopoiesis throughout the human lifespan. Preprint at https://doi.org/10.1101/2021.08.16.456475 (2021).

  • 24.

    Nangalia, J. et al. DNMT3A mutations happen early or late in sufferers with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica 100, 438–442 (2015).


    Google Scholar
     

  • 25.

    Ortmann, C. A. et al. Impact of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Lundberg, P. et al. Clonal evolution and scientific correlates of somatic mutations in myeloproliferative neoplasms. Blood 123, 2220–2228 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Godfrey, A. L. et al. JAK2V617F homozygosity arises generally and recurrently in PV and ET, however PV is characterised by enlargement of a dominant homozygous subclone. Blood 120, 2704–2707 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Kahn, J. D. et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Vaziri, H. et al. Proof for a mitotic clock in human hematopoietic stem cells: lack of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Anand, S. et al. Results of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118, 177–181 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chapman, M. S. et al. Lineage tracing of human improvement by means of somatic mutations. Nature 595, 85–90 (2021).

    ADS 

    Google Scholar
     

  • 32.

    de Kanter, J. Ok. et al. Antiviral therapy causes a singular mutational signature in cancers of transplantation recipients. Cell Stem Cell 28, 1726–1739 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Titmarsh, G. J. et al. How frequent are myeloproliferative neoplasms? A scientific evaluation and meta-analysis. Am. J. Hematol. 89, 581–587 (2014).

    PubMed 

    Google Scholar
     

  • 34.

    Mehta, J., Wang, H., Iqbal, S. U. & Mesa, R. Epidemiology of myeloproliferative neoplasms in america. Leuk. Lymphoma 55, 595–600 (2014).

    PubMed 

    Google Scholar
     

  • 35.

    Van Egeren, D. et al. Reconstructing the lineage histories and differentiation trajectories of particular person most cancers cells in myeloproliferative neoplasms. Cell Stem Cell 28, 514–523.e9 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    McKerrell, T. et al. JAK2 V617F hematopoietic clones are current a number of years previous to MPN analysis and observe totally different enlargement kinetics. Blood Adv. 1, 968–971 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Hirsch, P. et al. Clonal historical past of a twine blood donor cell leukemia with prenatal somatic JAK2 V617F mutation. Leukemia 30, 1756–1759 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Wong, W. H. et al. Engraftment of uncommon, pathogenic donor hematopoietic mutations in unrelated hematopoietic stem cell transplantation. Sci. Transl. Med. 12, eaax6249 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Olcaydu, D. et al. A standard JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Hinds, D. A. et al. Germ line variants predispose to each JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128, 1121–1128 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Fleischman, A. G. Irritation as a driver of clonal evolution in myeloproliferative neoplasm. Mediators Inflamm. 2015, 606819 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 complete genomes. Nature 586, 763–768 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Bao, E. L. et al. Inherited myeloproliferative neoplasm threat impacts haematopoietic stem cells. Nature 586, 769–775 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Watson, C. J. et al. The evolutionary dynamics and health panorama of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Arber, D. A. et al. The 2016 revision to the World Well being Group classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Nielsen, C., Birgens, H. S., Nordestgaard, B. G. & Bojesen, S. E. Diagnostic worth of JAK2 V617F somatic mutation for myeloproliferative most cancers in 49 488 people from the final inhabitants. Br. J. Haematol. 160, 70–79 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Kiladjian, J. J. et al. Pegylated interferon-α-2a induces full hematologic and molecular responses with low toxicity in polycythemia vera. Blood 112, 3065–3072 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Pieri, L. et al. JAK2V617F full molecular remission in polycythemia vera/important thrombocythemia sufferers handled with ruxolitinib. Blood 125, 3352–3353 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369, 2391–2405 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Ellis, P. et al. Dependable detection of somatic mutations in stable tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Jones, D. et al. cgpCaVEManWrapper: easy execution of CaVEMan as a way to detect somatic single nucleotide variants in NGS information. Curr. Protoc. Bioinforma. 56, 15.10.1–15.10.18 (2016).


    Google Scholar
     

  • 52.

    Ye, Ok., Schulz, M. H., Lengthy, Q., Apweiler, R. & Ning, Z. Pindel: a sample progress method to detect break factors of huge deletions and medium sized insertions from paired-end brief reads. Bioinformatics 25, 2865–2871 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Van Bathroom, P. et al. Allele-specific copy quantity evaluation of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hoang, D. T. et al. MPBoot: quick phylogenetic most parsimony tree inference and bootstrap approximation. BMC Evol. Biol. 18, 11 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).


    Google Scholar
     

  • 56.

    Tavaré, S. The linear birthdeath course of: An inferential retrospective. Adv. Appl. Probab. 50, 253–269 (2018).

    MathSciNet 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments