ICGC/TCGA Pan-Most cancers Evaluation of Complete Genomes Consortium. Pan-cancer evaluation of complete genomes. Nature 578, 82–93 (2020).
Gerstung, M. et al. The evolutionary historical past of two,658 cancers. Nature 578, 122–128 (2020).
Mitchell, T. J. et al. Timing the landmark occasions within the evolution of clear cell renal cell most cancers: TRACERx Renal. Cell 173, 611–623.e17 (2018).
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
Radivoyevitch, T., Hlatky, L., Landaw, J. & Sachs, R. Ok. Quantitative modeling of power myeloid leukemia: insights from radiobiology. Blood 119, 4363–4371 (2012).
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).
Lee-Six, H. et al. The panorama of somatic mutation in regular colorectal epithelial cells. Nature 574, 532–537 (2019).
Brunner, S. F. et al. Somatic mutations and clonal dynamics in wholesome and cirrhotic human liver. Nature 574, 538–542 (2019).
Moore, L. et al. The mutational panorama of regular human endometrial epithelium. Nature 580, 640–646 (2020).
Martincorena, I. et al. Excessive burden and pervasive optimistic number of somatic mutations in regular human pores and skin. Science 348, 880–886 (2015).
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated most cancers drivers. Nature 565, 312–317 (2019).
Genovese, G. et al. Clonal hematopoiesis and blood-cancer threat inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
Jaiswal, S. et al. Age-related clonal hematopoiesis related to antagonistic outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
Xie, M. et al. Age-related mutations related to clonal hematopoietic enlargement and malignancies. Nat. Med. 20, 1472–1478 (2014).
Younger, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in wholesome adults. Nat. Commun. 7, 12484 (2016).
Abelson, S. et al. Prediction of acute myeloid leukaemia threat in wholesome people. Nature 559, 400–404 (2018).
Vainchenker, W. & Kralovics, R. Genetic foundation and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 129, 667–679 (2017).
Grinfeld, J. et al. Classification and personalised prognosis in myeloproliferative neoplasms. N. Engl. J. Med. 379, 1416–1430 (2018).
Lee-Six, H. et al. Inhabitants dynamics of regular human blood inferred from somatic mutations. Nature 561, 473–478 (2018).
Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).
Abascal, F. et al. Somatic mutation landscapes at single-molecule decision. Nature 593, 405–410 (2021).
Mitchell, E. et al. Clonal dynamics of haematopoiesis throughout the human lifespan. Preprint at https://doi.org/10.1101/2021.08.16.456475 (2021).
Nangalia, J. et al. DNMT3A mutations happen early or late in sufferers with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica 100, 438–442 (2015).
Ortmann, C. A. et al. Impact of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).
Lundberg, P. et al. Clonal evolution and scientific correlates of somatic mutations in myeloproliferative neoplasms. Blood 123, 2220–2228 (2014).
Godfrey, A. L. et al. JAK2V617F homozygosity arises generally and recurrently in PV and ET, however PV is characterised by enlargement of a dominant homozygous subclone. Blood 120, 2704–2707 (2012).
Kahn, J. D. et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018).
Vaziri, H. et al. Proof for a mitotic clock in human hematopoietic stem cells: lack of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).
Anand, S. et al. Results of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118, 177–181 (2011).
Chapman, M. S. et al. Lineage tracing of human improvement by means of somatic mutations. Nature 595, 85–90 (2021).
de Kanter, J. Ok. et al. Antiviral therapy causes a singular mutational signature in cancers of transplantation recipients. Cell Stem Cell 28, 1726–1739 (2021).
Titmarsh, G. J. et al. How frequent are myeloproliferative neoplasms? A scientific evaluation and meta-analysis. Am. J. Hematol. 89, 581–587 (2014).
Mehta, J., Wang, H., Iqbal, S. U. & Mesa, R. Epidemiology of myeloproliferative neoplasms in america. Leuk. Lymphoma 55, 595–600 (2014).
Van Egeren, D. et al. Reconstructing the lineage histories and differentiation trajectories of particular person most cancers cells in myeloproliferative neoplasms. Cell Stem Cell 28, 514–523.e9 (2021).
McKerrell, T. et al. JAK2 V617F hematopoietic clones are current a number of years previous to MPN analysis and observe totally different enlargement kinetics. Blood Adv. 1, 968–971 (2017).
Hirsch, P. et al. Clonal historical past of a twine blood donor cell leukemia with prenatal somatic JAK2 V617F mutation. Leukemia 30, 1756–1759 (2016).
Wong, W. H. et al. Engraftment of uncommon, pathogenic donor hematopoietic mutations in unrelated hematopoietic stem cell transplantation. Sci. Transl. Med. 12, eaax6249 (2020).
Olcaydu, D. et al. A standard JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009).
Hinds, D. A. et al. Germ line variants predispose to each JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128, 1121–1128 (2016).
Fleischman, A. G. Irritation as a driver of clonal evolution in myeloproliferative neoplasm. Mediators Inflamm. 2015, 606819 (2015).
Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 complete genomes. Nature 586, 763–768 (2020).
Bao, E. L. et al. Inherited myeloproliferative neoplasm threat impacts haematopoietic stem cells. Nature 586, 769–775 (2020).
Watson, C. J. et al. The evolutionary dynamics and health panorama of clonal hematopoiesis. Science 367, 1449–1454 (2020).
Arber, D. A. et al. The 2016 revision to the World Well being Group classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).
Nielsen, C., Birgens, H. S., Nordestgaard, B. G. & Bojesen, S. E. Diagnostic worth of JAK2 V617F somatic mutation for myeloproliferative most cancers in 49 488 people from the final inhabitants. Br. J. Haematol. 160, 70–79 (2013).
Kiladjian, J. J. et al. Pegylated interferon-α-2a induces full hematologic and molecular responses with low toxicity in polycythemia vera. Blood 112, 3065–3072 (2008).
Pieri, L. et al. JAK2V617F full molecular remission in polycythemia vera/important thrombocythemia sufferers handled with ruxolitinib. Blood 125, 3352–3353 (2015).
Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369, 2391–2405 (2013).
Ellis, P. et al. Dependable detection of somatic mutations in stable tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).
Jones, D. et al. cgpCaVEManWrapper: easy execution of CaVEMan as a way to detect somatic single nucleotide variants in NGS information. Curr. Protoc. Bioinforma. 56, 15.10.1–15.10.18 (2016).
Ye, Ok., Schulz, M. H., Lengthy, Q., Apweiler, R. & Ning, Z. Pindel: a sample progress method to detect break factors of huge deletions and medium sized insertions from paired-end brief reads. Bioinformatics 25, 2865–2871 (2009).
Van Bathroom, P. et al. Allele-specific copy quantity evaluation of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
Hoang, D. T. et al. MPBoot: quick phylogenetic most parsimony tree inference and bootstrap approximation. BMC Evol. Biol. 18, 11 (2018).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
Tavaré, S. The linear birthdeath course of: An inferential retrospective. Adv. Appl. Probab. 50, 253–269 (2018).