Wednesday, August 10, 2022
HomeNatureGREM1 is required to take care of mobile heterogeneity in pancreatic most...

GREM1 is required to take care of mobile heterogeneity in pancreatic most cancers


  • Wang, V. M. et al. CD9 identifies pancreatic most cancers stem cells and modulates glutamine metabolism to gasoline tumour development. Nat. Cell Biol. 21, 1425–1435 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ligorio, M. et al. Stromal microenvironment shapes the intratumoral structure of pancreatic most cancers. Cell 178, 160–175 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic most cancers are pushed by genomic occasions throughout tumor evolution. Nat. Genet. 52, 231–240 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous options in pancreatic ductal adenocarcinoma. Nat. Most cancers 1, 59–74 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Collisson, E. A., Bailey, P., Chang, D. Okay. & Biankin, A. V. Molecular subtypes of pancreatic most cancers. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony within the household. Developments Cell Biol. 25, 249–264 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ouahoud, S., Hardwick, J. C. H. & Hawinkels, L. Extracellular BMP antagonists, multifaceted orchestrators within the tumor and its microenvironment. Int. J. Mol. Sci. 21, 3888 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sankpal, N. V., Fleming, T. P., Sharma, P. Okay., Wiedner, H. J. & Gillanders, W. E. A double-negative suggestions loop between EPCAM and ERK contributes to the regulation of epithelial-mesenchymal transition in most cancers. Oncogene 36, 3706–3717 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pastushenko, I. et al. Identification of the tumour transition states occurring throughout EMT. Nature 556, 463–468 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Bardeesy, N. et al. Each p16Ink4a and the p19Arf-p53 pathway constrain development of pancreatic adenocarcinoma within the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific focusing on of pancreatic most cancers. Nat. Med. 20, 1340–1347 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gazzerro, E. et al. Conditional deletion of gremlin causes a transient enhance in bone formation and bone mass. J. Biol. Chem. 282, 31549–31557 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muzumdar, M. D., Tasic, B., Miyamichi, Okay., Li, L. & Luo, L. A worldwide double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to remedy. Nat. Med. 17, 500–503 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaffer, C. L., San Juan, B. P., Lim, E. & Weinberg, R. A. EMT, cell plasticity and metastasis. Most cancers Metastasis Rev. 35, 645–654 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for most cancers. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, J. et al. Tips and definitions for analysis on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Moffitt, R. A. et al. Digital microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neuzillet, C. et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J. Pathol. 248, 51–65 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pastushenko, I. & Blanpain, C. EMT transition states throughout tumor development and metastasis. Developments Cell Biol. 29, 212–226 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanvitale, C. E. et al. A brand new class of small molecule inhibitor of BMP signaling. PLoS ONE 8, e62721 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant features of EMT transcription components. Nat. Cell Biol. 21, 102–112 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guaita, S. et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J. Biol. Chem. 277, 39209–39216 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tran, D. D., Corsa, C. A., Biswas, H., Aft, R. L. & Longmore, G. D. Temporal and spatial cooperation of Snail1 and Twist1 throughout epithelial-mesenchymal transition predicts for human breast most cancers recurrence. Mol. Most cancers Res. 9, 1644–1657 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dave, N. et al. Useful cooperation between Snail1 and twist within the regulation of ZEB1 expression throughout epithelial to mesenchymal transition. J. Biol. Chem. 286, 12024–12032 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kröger, C. et al. Acquisition of a hybrid E/M state is important for tumorigenicity of basal breast most cancers cells. Proc. Natl Acad. Sci. USA 116, 7353–7362 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Turing, A. M. The chemical foundation of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    MathSciNet 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Madamanchi, A., Mullins, M. C. & Umulis, D. M. Range and robustness of bone morphogenetic protein sample formation. Growth 148, dev192344 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jackson, E. L. et al. Evaluation of lung tumor initiation and development utilizing conditional expression of oncogenic Okay-ras. Genes Dev. 15, 3243–3248 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb within the exterior granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic most cancers and its early detection within the mouse. Most cancers Cell 4, 437–450 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Srinivas, S. et al. Cre reporter strains produced by focused insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flanagan, S. P. ‘Nude’, a brand new hairless gene with pleiotropic results within the mouse. Genet. Res. 8, 295–309 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, F. et al. RNAscope: a novel in situ RNA evaluation platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boj, S. F. et al. Organoid fashions of human and mouse ductal pancreatic most cancers. Cell 160, 324–338 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yusa, Okay., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. A hyperactive piggyBac transposase for mammalian functions. Proc. Natl Acad. Sci. USA 108, 1531–1536 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Fujii, M., Matano, M., Nanki, Okay. & Sato, T. Environment friendly genetic engineering of human intestinal organoids utilizing electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramachandran, A. et al. TGF-β makes use of a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife 7, e31756 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a brand new device for correct chopping of primers from reads of focused subsequent technology sequencing. J. Comput. Biol. 24, 1138–1143 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-seq information with or with out a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aken, B. L. et al. Ensembl 2017. Nucleic Acids Res. 45, D635–D642 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Howe, Okay. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jolliffe, I. T. & Cadima, J. Principal part evaluation: a evaluation and up to date developments. Philos. Trans. A 374, 20150202 (2016).

    MathSciNet 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Durinck, S. et al. BioMart and Bioconductor: a strong hyperlink between organic databases and microarray information evaluation. Bioinformatics 21, 3439–3440 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoshida, Y. Nearest template prediction: a single-sample-based versatile class prediction with confidence evaluation. PLoS ONE 5, e15543 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Elyada, E. et al. Cross-species single-cell evaluation of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Most cancers Discov. 9, 1102–1123 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set assortment. Cell Syst. 1, 417–425 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ashburner, M. et al. Gene Ontology: device for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant development in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout completely different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of huge gene lists utilizing DAVID bioinformatics sources. Nat. Protoc. 4, 44–57 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Fornes, O. et al. JASPAR 2020: replace of the open-access database of transcription issue binding profiles. Nucleic Acids Res. 48, D87–d92 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghandi, M. et al. Subsequent-generation characterization of the Most cancers Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments