Monday, August 15, 2022
HomeNatureDigital quantum simulation of Floquet symmetry-protected topological phases

Digital quantum simulation of Floquet symmetry-protected topological phases


  • Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Section construction of pushed quantum techniques. Phys. Rev. Lett. 116, 250401 (2016).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sacha, Ok. & Zakrzewski, J. Time crystals: a overview. Rep. Prog. Phys. 81, 016401 (2017).

    MathSciNet 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. Matter Phys. 11, 467–499 (2020).

    Article 

    Google Scholar
     

  • Yao, N. Y. & Nayak, C. Time crystals in periodically pushed techniques. Phys. In the present day 71, 40 (2018).

    Article 

    Google Scholar
     

  • Khemani, V., Moessner, R. & Sondhi, S. A quick historical past of time crystals. Preprint at https://arxiv.org/abs/1910.10745 (2019).

  • Zhang, J. et al. Statement of a discrete time crystal. Nature 543, 217–220 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Kyprianidis, A. et al. Statement of a prethermal discrete time crystal. Science 372, 1192–1196 (2021).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Choi, S. et al. Statement of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • O’Sullivan, J. et al. Signatures of discrete time crystalline order in dissipative spin ensembles. New J. Phys. 22, 085001 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Randall, J. et al. Many-body-localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Rovny, J., Blum, R. L. & Barrett, S. E. Statement of discrete-time-crystal signatures in an ordered dipolar many-body system. Phys. Rev. Lett. 120, 180603 (2018).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal order in periodically pushed spins in star-shaped clusters. Phys. Rev. Lett. 120, 180602 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Statement of a space-time crystal in a superfluid quantum fuel. Phys. Rev. Lett. 121, 185301 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Autti, S., Eltsov, V. B. & Volovik, G. E. Statement of a time quasicrystal and its transition to a superfluid time crystal. Phys. Rev. Lett. 120, 215301 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ying, C. et al. Floquet prethermal section protected by u(1) symmetry on a superconducting quantum processor. Phys. Rev. A 105, 012418 (2022).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. Realizing discrete time crystal in an one-dimensional superconducting qubit chain. Preprint at https://arxiv.org/abs/2108.00942 (2021).

  • Preskill, J. Quantum computing within the NISQ period and past. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • Pollmann, F., Berg, E., Turner, A. M. & Oshikawa, M. Symmetry safety of topological phases in one-dimensional quantum spin techniques. Phys. Rev. B 85, 075125 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in interacting bosonic techniques. Science 338, 1604–1606 (2012).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Chiu, C.-Ok., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schreiber, M. et al. Statement of many-body localization of interacting fermions in a quasi-random optical lattice. Science 349, 842–845 (2015).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Smith, J. et al. Many-body localization in a quantum simulator with programmable random dysfunction. Nat. Physics 12, 907–911 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Xu, Ok. et al. Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett. 120, 050507 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chandran, A., Khemani, V., Laumann, C. R. & Sondhi, S. L. Many-body localization and symmetry-protected topological order. Phys. Rev. B 89, 144201 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected quantum coherence on the fringe of scorching matter. Nat. Commun. 6, 7341 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Parameswaran, S. A., Potter, A. C. & Vasseur, R. Eigenstate section transitions and the emergence of common dynamics in extremely excited states. Ann. Phys. (Berl.) 529, 1600302 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parameswaran, S. A. & Vasseur, R. Many-body localization, symmetry and topology. Rep. Prog. Phys. 81, 082501 (2018).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically pushed ergodic and many-body localized quantum techniques. Ann. Phys. (N.Y.) 353, 196–204 (2015).

    MathSciNet 
    CAS 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Harper, F., Roy, R., Rudner, M. S. & Sondhi, S. Topology and damaged symmetry in floquet techniques. Annu. Rev. Condens. Matter Phys. 11, 345–368 (2020).

    Article 

    Google Scholar
     

  • von Keyserlingk, C. W. & Sondhi, S. L. Section construction of one-dimensional interacting floquet techniques. i. abelian symmetry-protected topological phases. Phys. Rev. B 93, 245145 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Else, D. V. & Nayak, C. Classification of topological phases in periodically pushed interacting techniques. Phys. Rev. B 93, 201103 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological floquet phases in a single dimension. Phys. Rev. X 6, 041001 (2016).


    Google Scholar
     

  • Potirniche, I.-D., Potter, A. C., Schleier-Smith, M., Vishwanath, A. & Yao, N. Y. Floquet Symmetry-Protected Topological Phases in Chilly-Atom Programs. Phys. Rev. Lett. 119, 123601 (2017).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Roy, R. & Harper, F. Periodic desk for floquet topological insulators. Phys. Rev. B 96, 155118 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

    MathSciNet 
    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dumitrescu, P. T. et al. Realizing a dynamical topological section in a trapped-ion quantum simulator. Preprint at https://arxiv.org/abs/2107.09676 (2021).

  • Lu, Z., Shen, P.-X. & Deng, D.-L. Markovian quantum neuroevolution for machine studying. Phys. Rev. Appl. 16, 044039 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in floquet techniques. Phys. Rev. B 94, 085112 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khemani, V., von Keyserlingk, C. W. & Sondhi, S. L. Defining time crystals through illustration idea. Phys. Rev. B 96, 115127 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, A., Dumitrescu, P. T. & Potter, A. C. String order parameters for one-dimensional floquet symmetry protected topological phases. Phys. Rev. B 97, 224302 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum corridor impact states. Phys. Rev. Lett. 101, 010504 (2008).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Swingle, B. & Senthil, T. Geometric proof of the equality between entanglement and edge spectra. Phys. Rev. B 86, 045117 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fidkowski, L. Entanglement spectrum of topological insulators and superconductors. Phys. Rev. Lett. 104, 130502 (2010).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alba, V., Haque, M. & Läuchli, A. M. Boundary-locality and perturbative construction of entanglement spectra in gapped techniques. Phys. Rev. Lett. 108, 227201 (2012).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fendley, P. Parafermionic edge zero modes in Zn-invariant spin chains. J. Stat. Mech. Idea Exp. 2012, P11020 (2012).

  • Iadecola, T., Santos, L. H. & Chamon, C. Stroboscopic symmetry-protected topological phases. Phys. Rev. B 92, 125107 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded progress of entanglement in fashions of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Excessive-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett. 125, 240503 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Collodo, M. C. et al. Implementation of conditional section gates primarily based on tunable zz interactions. Phys. Rev. Lett. 125, 240502 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Sung, Y. et al. Realization of high-fidelity cz and zz-free iswap gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).

    CAS 

    Google Scholar
     

  • Wu, Y. et al. Robust quantum computational benefit utilizing a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Track, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • McKay, D. C., Wooden, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Environment friendly z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Foxen, B. et al. Demonstrating a steady set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Friedman, A. J., Ware, B., Vasseur, R. & Potter, A. C. Topological edge modes with out symmetry in quasiperiodically pushed spin chains. Phys. Rev. B 105, 115117 (2022).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments