Born, M. On the quantum concept of pyroelectricity. Rev. Mod. Phys. 17, 245–251 (1945).
Szigeti, B. Temperature dependence of pyroelectricity. Phys. Rev. Lett. 35, 1532–1534 (1975).
Lang, S. B. Pyroelectricity: from historical curiosity to fashionable imaging instrument. Phys. At this time 58, 31 (2005).
Wang, Z. et al. Gentle-induced pyroelectric impact as an efficient method for ultrafast ultraviolet nanosensing. Nat. Commun. 6, 8401 (2015).
Yang, Y. et al. Pyroelectric nanogenerators for harvesting thermoelectric power. Nano Lett. 12, 2833–2838 (2012).
Pandya, S. et al. Pyroelectric power conversion with massive power and energy density in relaxor ferroelectric skinny movies. Nat. Mater. 17, 432–438 (2018).
You, H. et al. Room-temperature pyro-catalytic hydrogen era of 2D few-layer black phosphorene below cold-hot alternation. Nat. Commun. 9, 2889 (2018).
Naranjo, B., Gimzewski, J. Ok. & Putterman, S. Statement of nuclear fusion pushed by a pyroelectric crystal. Nature 434, 1115–1117 (2005).
Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2020).
Resta, R. & Vanderbilt, D. in Physics of Ferroelectrics: A Fashionable Perspective 31–68 (Springer, 2007).
Allen, P. B. & Heine, V. Idea of the temperature dependence of digital band constructions. J. Phys. C Stable State Phys. 9, 2305–2312 (1976).
Giustino, F., Louie, S. G. & Cohen, M. L. Electron-phonon renormalization of the direct band hole of diamond. Phys. Rev. Lett. 105, 265501 (2010).
Liu, J. & Pantelides, S. T. Mechanisms of pyroelectricity in three- and two-dimensional supplies. Phys. Rev. Lett. 120, 207602 (2018).
Peierls, R. E. Quantum Idea of Solids 108 (Oxford Univ. Press, 1955).
Landau, L. The idea of part transitions. Nature 138, 840–841 (1936).
Halperin, B. I. On the Hohenberg–Mermin–Wagner theorem and its limitations. J. Stat. Phys. 175, 521–529 (2019).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and part transitions in two-dimensional techniques. J. Phys. C Stable State Phys. 6, 1181–1203 (1973).
Hong, S. S. et al. Two-dimensional restrict of crystalline order in perovskite membrane movies. Sci. Adv. 3, eaao5173 (2017).
Ji, D. et al. Freestanding crystalline oxide perovskites right down to the monolayer restrict. Nature 570, 87–90 (2019).
Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).
Tusche, C., Meyerheim, H. L. & Kirschner, J. Statement of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).
Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes right down to the monolayer restrict. Adv. Funct. Mater. 28, 1803738 (2018).
Meirzadeh, E. et al. Floor pyroelectricity in cubic SrTiO3. Adv. Mater. 31, 1904733 (2019).
Yang, M.-M. et al. Piezoelectric and pyroelectric results induced by interface polar symmetry. Nature 584, 377–381 (2020).
Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020).
Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).
Chen, C. et al. Ferroelectricity in Dion–Jacobson ABiNb2O7 (A = Rb, Cs) compounds. J. Mater. Chem. C 3, 19–22 (2015).
Fennie, C. J. & Rabe, Ok. M. Ferroelectricity within the Dion-Jacobson CsBiNb2O7 from first ideas. Appl. Phys. Lett. 88, 262902 (2006).
Heiland, G. & Ibach, H. Pyroelectricity of zinc oxide. Stable State Commun. 4, 353–356 (1966).
Junquera, J. & Ghosez, P. Vital thickness for ferroelectricity in perovskite ultrathin movies. Nature 422, 506–509 (2003).
Chynoweth, A. G. Dynamic methodology for measuring the pyroelectric impact with particular reference to barium titanate. J. Appl. Phys. 27, 78–84 (1956).
Lubomirsky, I. & Stafsudd, O. Invited evaluate article: sensible information for pyroelectric measurements. Rev. Sci. Instrum. 83, 051101 (2012).
Whatmore, R. W. Pyroelectric gadgets and supplies. Rep. Prog. Phys. 49, 1335–1386 (1986).
Boehnke, U. C., Kühn, G., Berezovskii, G. A. & Spassov, T. Some features of the thermal behaviour of In2Se3. J. Therm. Anal. 32, 115–120 (1987).
Wu, D. et al. Thickness-dependent dielectric fixed of few-layer In2Se3 nanoflakes. Nano Lett. 15, 8136–8140 (2015).
Newnham, R. E. Properties of Supplies: Anisotropy, Symmetry, Construction (Oxford Univ. Press, 2005).
Langton, N. H. & Matthews, D. The dielectric fixed of zinc oxide over a variety of frequencies. Br. J. Appl. Phys. 9, 453–456 (1958).
Zhao, Z. et al. Grain-size results on the ferroelectric conduct of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004).
Warren, B. E. X-ray Diffraction (Courier Company, 1990).
Liu, J., Fernández-Serra, M. V. & Allen, P. B. First-principles research of pyroelectricity in GaN and ZnO. Phys. Rev. B 93, 081205 (2016).
Wang, B. & Gall, D. Totally strained epitaxial Ti1−xMgxN(001) layers. Skinny Stable Movies 688, 137165 (2019).
Yuan, Y. et al. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in practical perovskites. Nat. Commun. 9, 5220 (2018).
Vilaplana, R. et al. Experimental and theoretical research on α-In2Se3 at excessive stress. Inorg. Chem. 57, 8241–8252 (2018).
Liu, L. et al. Atomically resolving polymorphs and crystal constructions of In2Se3. Chem. Mater. 31, 10143–10149 (2019).
Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β′-In2Se3. Nat. Commun. 12, 3665 (2021).
Klemenz Rivenbark, C. F. in Springer Handbook of Crystal Development (eds Dhanaraj, G., Byrappa, Ok., Prasad, V. & Dudley, M.) 1041–1068 (Springer, 2010).
Morin, S. A., Forticaux, A., Bierman, M. J. & Jin, S. Screw dislocation-driven progress of two-dimensional nanoplates. Nano Lett. 11, 4449–4455 (2011).
Lewis, B. The expansion of crystals of low supersaturation: I. Idea. J. Cryst. Development 21, 29–39 (1974).
Guo, Y. et al. Unit-cell-thick area in free-standing quasi-two-dimensional ferroelectric materials. Phys. Rev. Mater. 5, 044403 (2021).
Schilling, A. et al. Scaling of area periodicity with thickness measured in BaTiO3 single crystal lamellae and comparability with different ferroics. Phys. Rev. B 74, 024115 (2006).
Taylor, D. Thermal enlargement knowledge. I: binary oxides with the sodium chloride and wurtzite constructions, MO. Trans. J. Br. Ceram. Soc. 83, 5–9 (1984).
Pathak, P. & Vasavada, N. Thermal enlargement of NaCl, KCl and CsBr by X-ray diffraction and the legislation of corresponding states. Acta Crystallogr. A 26, 655–658 (1970).
Jachalke, S. et al. The pyroelectric coefficient of free standing GaN grown by HVPE. Appl. Phys. Lett. 109, 142906 (2016).
Lang, S. B. & Das-Gupta, D. Ok. in Handbook of Superior Digital and Photonic Supplies and Gadgets (ed. Nalwa, H. S.) 1–55 (Educational Press, 2001).
Felix, P., Gamot, P., Lacheau, P. & Raverdy, Y. Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB. Ferroelectrics 17, 543–551 (1977).
Gebre, T., Batra, A. Ok., Guggilla, P., Aggarwal, M. D. & Lal, R. B. Pyroelectric properties of pure and doped lithium niobate crystals for infrared sensors. Ferroelectr. Lett. Sect. 31, 131–139 (2004).
Beerman, H. P. Investigation of pyroelectric materials traits for improved infrared detector efficiency. Infrared Phys. 15, 225–231 (1975).
Tang, Y. et al. Composition, dc bias and temperature dependence of pyroelectric properties of ⟨111⟩-oriented (1 − x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 crystals. Mater. Sci. Eng. B 119, 71–74 (2005).
Solar, R. et al. Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J. Appl. Phys. 115, 074101 (2014).
Liu, S. & Maciolek, R. Uncommon-earth-modified Sr0.5Ba0.5Nb2O6, ferroelectric crystals and their functions as infrared detectors. J. Electron. Mater. 4, 91–100 (1975).
Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).
Yuzyuk, Y. I. Raman scattering spectra of ceramics, movies, and superlattices of ferroelectric perovskites: a evaluate. Phys. Stable State 54, 1026–1059 (2012).
Jehng, J. M. & Wachs, I. E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 3, 100–107 (1991).
Hyperlink, A. et al. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 86, 6256–6260 (1999).
Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic results in gentle scattering because of optical phonons in silicon. Phys. Rev. B 28, 1928–1934 (1983).
Solar, X., Shi, J., Washington, M. A. & Lu, T.-M. Probing the interface pressure in a 3D-2D van der Waals heterostructure. Appl. Phys. Lett. 111, 151603 (2017).
Postmus, C., Ferraro, J. R. & Mitra, S. S. Strain dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 174, 983–987 (1968).
Ager, J. W., Veirs, D. Ok. & Rosenblatt, G. M. Spatially resolved Raman research of diamond movies grown by chemical vapor deposition. Phys. Rev. B 43, 6491–6499 (1991).