Sunday, May 22, 2022
HomeNatureAgeing exacerbates ribosome pausing to disrupt cotranslational proteostasis

Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis


  • 1.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of ageing. Cell 153, 1194–1217 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Chiti, F. & Dobson, C. M. Protein misfolding, practical amyloid, and human illness. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Pechmann, S., Willmund, F. & Frydman, J. The ribosome as a hub for protein high quality management. Mol. Cell 49, 411–421 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is crucial for high quality management throughout no-go decay. Mol. Cell 68, 361–373 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Juszkiewicz, S. et al. ZNF598 is a high quality management sensor of collided ribosomes. Mol. Cell 72, 469–481 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Brandman, O. et al. A ribosome-bound high quality management advanced triggers degradation of nascent peptides and indicators translation stress. Cell 151, 1042–1054 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo points of protein folding and high quality management. Science 353, aac4354 (2016).

    PubMed 

    Google Scholar
     

  • 8.

    Jahn, T. R. & Radford, S. E. Folding versus aggregation: polypeptide conformations on competing pathways. Arch. Biochem. Biophys. 469, 100–117 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread aggregation and neurodegenerative illnesses are related to supersaturated proteins. Cell Rep. 5, 781–790 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Gingold, H. & Pilpel, Y. Determinants of translation effectivity and accuracy. Mol. Syst. Biol. 7, 481 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Stein, Ok. C. & Frydman, J. The stop-and-go visitors regulating protein biogenesis: how translation kinetics controls proteostasis. J. Biol. Chem. 294, 2076–2084 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Yu, C.-H. et al. Codon utilization influences the native price of translation elongation to manage co-translational protein folding. Mol. Cell 59, 744–754 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Collart, M. A. & Weiss, B. Ribosome pausing, a harmful necessity for co-translational occasions. Nucleic Acids Res. 48, 1043–1055 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Chartron, J. W., Hunt, Ok. C. L. & Frydman, J. Cotranslational signal-independent SRP preloading throughout membrane focusing on. Nature 536, 224–228 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pechmann, S., Chartron, J. W. & Frydman, J. Native slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Stein, Ok. C., Kriel, A. & Frydman, J. Nascent polypeptide area topology and elongation price direct the cotranslational hierarchy of Hsp70 and TRiC/CCT. Mol. Cell 75, 1117–1130 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sitron, C. S. & Brandman, O. Detection and degradation of stalled nascent chains by way of ribosome-associated high quality management. Annu. Rev. Biochem. 89, 417–442 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Brandman, O. & Hegde, R. S. Ribosome-associated protein high quality management. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Dimitrova, L. N., Kuroha, Ok., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest results in Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Buhr, F. et al. Synonymous codons direct cotranslational folding towards completely different protein conformations. Mol. Cell 61, 341–351 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Nedialkova, D. D. & Leidel, S. A. Optimization of codon translation charges by way of trna modifications maintains proteome integrity. Cell 161, 1606–1618 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Kim, S. J. et al. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 348, 444–448 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Willmund, F. et al. The cotranslational operate of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152, 196–209 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Duttler, S., Pechmann, S. & Frydman, J. Ideas of cotranslational ubiquitination and high quality management on the ribosome. Mol. Cell 50, 379–393 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Koplin, A. et al. A twin operate for chaperones SSB-RAC and the NAC nascent polypeptide-associated advanced on ribosomes. J. Cell Biol. 189, 57–68 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Choe, Y.-J. et al. Failure of RQC equipment causes protein aggregation and proteotoxic stress. Nature 531, 191–195 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yonashiro, R. et al. The Rqc2/Tae2 subunit of the ribosome-associated high quality management (RQC) advanced marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5, e11794 (2016).


    Google Scholar
     

  • 31.

    Wu, C. C.-C., Peterson, A., Zinshteyn, B., Regot, S. & Inexperienced, R. Ribosome collisions set off common stress responses to manage cell destiny. Cell 182, 404–416 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Ishimura, R. et al. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Bengtson, M. H. & Joazeiro, C. A. P. Position of a ribosome-associated E3 ubiquitin ligase in protein high quality management. Nature 467, 470–473 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Taylor, R. C. & Dillin, A. Getting older as an occasion of proteostasis collapse. Chilly Spring Harb. Perspect. Biol. 3, a004440 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular occasion in Caenorhabditis elegans ageing. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Steffen, Ok. Ok. & Dillin, A. A ribosomal perspective on proteostasis and ageing. Cell Metab. 23, 1004–1012 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Walther, D. M. et al. Widespread proteome reworking and aggregation in ageing C. elegans. Cell 161, 919–932 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Pan, Ok. Z. et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Getting older Cell 6, 111–119 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Hansen, M. et al. Lifespan extension by situations that inhibit translation in Caenorhabditis elegans. Getting older Cell 6, 95–110 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Reis-Rodrigues, P. et al. Proteomic evaluation of age-dependent adjustments in protein solubility identifies genes that modulate lifespan. Getting older Cell 11, 120–127 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Narayan, V. et al. Deep proteome evaluation identifies age-related processes in C. elegans. Cell Syst. 3, 144–159 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Hu, Z. et al. Ssd1 and Gcn2 suppress international translation effectivity in replicatively aged yeast whereas their activation extends lifespan. eLife 7, 4443 (2018).


    Google Scholar
     

  • 43.

    Younger, D. J., Guydosh, N. R., Zhang, F., Hinnebusch, A. G. & Inexperienced, R. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3’UTRs in vivo. Cell 162, 872–884 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Guydosh, N. R. & Inexperienced, R. Dom34 rescues ribosomes in 3′ untranslated areas. Cell 156, 950–962 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Choi, J. et al. How messenger RNA and nascent chain sequences regulate translation elongation. Annu. Rev. Biochem. 87, 421–449 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R. & Inexperienced, R. eIF5A capabilities globally in translation elongation and termination. Mol. Cell 66, 194–205 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Meydan, S. & Guydosh, N. R. Disome and trisome profiling reveal genome-wide targets of ribosome high quality management. Mol. Cell 79, 588–602 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Gamble, C. E., Brule, C. E., Dean, Ok. M., Fields, S. & Grayhack, E. J. Adjoining codons act in live performance to modulate translation effectivity in yeast. Cell 166, 679–690 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Han, P. et al. Genome-wide survey of ribosome collision. Cell Rep. 31, 107610 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Juszkiewicz, S., Speldewinde, S. H., Wan, L., Svejstrup, J. Q. & Hegde, R. S. The ASC-1 advanced disassembles collided ribosomes. Mol. Cell 79, 603–614 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ikeuchi, Ok. et al. Collided ribosomes kind a novel structural interface to induce Hel2-driven high quality management pathways. EMBO J. 38, e100276 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Shen, P. S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Shao, S., Malsburg, von der, Ok. & Hegde, R. S. Listerin-dependent nascent protein ubiquitination depends on ribosome subunit dissociation. Mol. Cell 50, 637–648 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Shao, S. & Hegde, R. S. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified elements. Mol. Cell 55, 880–890 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. Construction and meeting pathway of the ribosome high quality management advanced. Mol. Cell 57, 433–444 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Juszkiewicz, S. & Hegde, R. S. Initiation of high quality management throughout poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated high quality management operate by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated high quality management. Nat. Commun. 8, 159 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Tsuboi, T. et al. Dom34:hbs1 performs a common position in quality-control techniques by dissociation of a stalled ribosome on the 3′ finish of aberrant mRNA. Mol. Cell 46, 518–529 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Sitron, C. S. & Brandman, O. CAT tails drive on- and off-ribosome degradation of stalled polypeptides. Nat. Struct. Mol. Biol. 26, 450–459 (2018).


    Google Scholar
     

  • 61.

    Anisimova, A. S. et al. Multifaceted deregulation of gene expression and protein synthesis with age. Proc. Natl Acad. Sci. USA 117, 15581–15590 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. Ok. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to vitamins. Science 310, 1193–1196 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    David, D. C. et al. Widespread protein aggregation as an inherent a part of ageing in C. elegans. PLoS Biol. 8, e1000450 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Barros, G. C. et al. Rqc1 and different yeast proteins containing extremely positively charged sequences usually are not targets of the RQC advanced. J. Biol. Chem. 296, 100586 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Winzeler, E. A. et al. Purposeful characterization of the S. cerevisiae genome by gene deletion and parallel evaluation. Science 285, 901–906 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Yofe, I. et al. One library to make all of them: streamlining the creation of yeast libraries by way of a SWAp-Tag technique. Nat. Chem. Biol. 13, 371–378 (2016).


    Google Scholar
     

  • 70.

    Huh, W.-Ok. et al. International evaluation of protein localization in budding yeast. Nature 425, 686–691 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Hughes, A. L. & Gottschling, D. E. An early age improve in vacuolar pH limits mitochondrial operate and lifespan in yeast. Nature 492, 261–265 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling technique for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of quick DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Dey, Ok. Ok., Xie, D. & Stephens, M. A brand new sequence emblem plot to spotlight enrichment and depletion. BMC Bioinform. 19, 473 (2018).

    CAS 

    Google Scholar
     

  • 76.

    Burtner, C. R., Murakami, C. J., Kennedy, B. Ok. & Kaeberlein, M. A molecular mechanism of chronological ageing in yeast. Cell Cycle 8, 1256–1270 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar
     

  • 78.

    McCormick, M. A. et al. A complete evaluation of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of ageing. Cell Metab. 22, 895–906 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments