Wednesday, August 10, 2022
HomeNatureADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation

ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation


  • Samuel, C. E. Adenosine deaminase appearing on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J. Biol. Chem. 294, 1710–1720 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rice, G. I. et al. Mutations in ADAR1 trigger Aicardi–Goutieres syndrome related to a kind I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liddicoat, B. J. et al. RNA enhancing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ward, S. V. et al. RNA enhancing enzyme adenosine deaminase is a restriction issue for controlling measles virus replication that is also required for embryogenesis. Proc. Natl Acad. Sci. USA 108, 331–336 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Stress-induced apoptosis related to null mutation of ADAR1 RNA enhancing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hartner, J. C. et al. Liver disintegration within the mouse embryo brought on by deficiency within the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maurano, M. et al. Protein kinase R and the built-in stress response drive immunopathology brought on by mutations within the RNA deaminase ADAR1. Immunity 54, 1948–1960.e5 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakahama, T. et al. Mutations within the adenosine deaminase ADAR1 that stop endogenous Z-RNA binding induce Aicardi–Goutieres-syndrome-like encephalopathy. Immunity 54, 1976–1988.e7 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang, Q. et al. Adenosine-to-inosine enhancing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent sort I interferon responses. Immunity 54, 1961–1975.e5 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Reuver, R. et al. ADAR1 interplay with Z-RNA promotes enhancing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep. 36, 109500 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Aicardi–Goutieres syndrome-associated mutation at ADAR1 gene locus prompts innate immune response in mouse mind. J. Neuroinflammation 18, 169 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Inoue, M. et al. An Aicardi–Goutieres syndrome-causative level mutation in Adar1 gene invokes multiorgan irritation and late-onset encephalopathy in mice. J. Immunol. https://doi.org/10.4049/jimmunol.2100526 (2021).

  • Pestal, Ok. et al. Isoforms of RNA-editing enzyme ADAR1 independently management nucleic acid sensor MDA5-driven autoimmunity and multi-organ growth. Immunity 43, 933–944 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is crucial for the upkeep of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bajad, P. et al. An inside deletion of ADAR rescued by MAVS deficiency results in a minute phenotype. Nucleic Acids Res. 48, 3286–3303 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Placido, D., Brown, B. A. 2nd, Lowenhaupt, Ok., Wealthy, A. & Athanasiadis, A. A left-handed RNA double helix certain by the Zα area of the RNA-editing enzyme ADAR1. Construction 15, 395–404 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwartz, T., Rould, M. A., Lowenhaupt, Ok., Herbert, A. & Wealthy, A. Crystal construction of the Zα area of the human enhancing enzyme ADAR1 certain to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–2543 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deigendesch, N., Koch-Nolte, F. & Rothenburg, S. ZBP1 subcellular localization and affiliation with stress granules is managed by its Z-DNA binding domains. Nucleic Acids Res. 34, 5007–5020 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feng, S. et al. Alternate rRNA secondary buildings as regulators of translation. Nat. Struct. Mol. Biol. 18, 169–176 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devos, M. et al. Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and pores and skin irritation. J. Exp. Med. 217, e20191913 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and irritation. Nature 580, 391–395 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, R. et al. Intestine stem cell necroptosis by genome instability triggers bowel irritation. Nature 580, 386–390 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kesavardhana, S. et al. The Zα2 area of ZBP1 is a molecular swap regulating influenza-induced PANoptosis and perinatal lethality throughout growth. J. Biol. Chem. 295, 8325–8330 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ingram, J. P. et al. ZBP1/DAI drives RIPK3-mediated cell demise induced by IFNs within the absence of RIPK1. J. Immunol. 203, 1348–1355 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A. & Pasparakis, M. FADD and caspase-8 regulate intestine homeostasis and irritation by controlling MLKL- and GSDMD-mediated demise of intestinal epithelial cells. Immunity 52, 978–993.e6 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vongpipatana, T., Nakahama, T., Shibuya, T., Kato, Y. & Kawahara, Y. ADAR1 regulates early T cell growth by way of MDA5-dependent and -independent pathways. J. Immunol. 204, 2156–2168 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liddicoat, B. J. et al. Adenosine-to-inosine RNA enhancing by ADAR1 is crucial for regular murine erythropoiesis. Exp. Hematol. 44, 947–963 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37, 349–375 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim, J. I. et al. RNA enhancing at a restricted variety of websites is enough to forestall MDA5 activation within the mouse mind. PLoS Genet. 17, e1009516 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell demise pathways. Sci. Immunol. 1, aag2045 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thapa, R. J. et al. DAI senses influenza A virus genomic RNA and prompts RIPK3-dependent cell demise. Cell Host Microbe 20, 674–681 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of demise receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Micheau, O., Lens, S., Gaide, O., Alevizopoulos, Ok. & Tschopp, J. NF-κB alerts induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dillon, C. P. et al. Survival perform of the FADD–caspase-8–cFLIPL complicated. Cell Rep. 1, 401–407 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oberst, A. et al. Catalytic exercise of the caspase–8-FLIPL complicated inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, H. et al. Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host protection towards HSV1. Cell Loss of life Dis. 9, 816 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated irritation. Cell 172, 797–810.e13 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e14 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karki, R. et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to advertise tumorigenesis. Cell Rep. 37, 109858 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Livingston, J. H. et al. A kind I interferon signature identifies bilateral striatal necrosis attributable to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koehler, H. et al. Vaccinia virus E3 prevents sensing of Z-RNA to dam ZBP1-dependent necroptosis. Cell Host Microbe 29, 1266–1276.e5 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, T. et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180, 1115–1129.e13 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Michallet, M. C. et al. TRADD protein is a vital part of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Newton, Ok., Solar, X. & Dixit, V. M. Kinase RIP3 is dispensable for regular NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis issue receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Environment friendly gene modulation in mouse epiblast utilizing a Sox2Cre transgenic mouse pressure. Mech. Dev. 119, S97–S101 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis by way of a molecular swap mechanism. Immunity 39, 443–453 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beisner, D. R., Ch’en, I. L., Kolla, R. V., Hoffmann, A. & Hedrick, S. M. Innovative: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175, 3469–3473 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to limit virus propagation in mice. Cell Host Microbe 17, 229–242 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Groote, P. et al. Era of a brand new Gateway-compatible inducible lentiviral vector platform permitting simple derivation of co-transduced cells. Biotechniques 60, 252–259 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Peisley, A. et al. Cooperative meeting and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl Acad. Sci. USA 108, 21010–21015 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sakurai, M. et al. ADAR1 controls apoptosis of careworn cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 24, 534–543 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim, M. S., Hur, B. & Kim, S. RDDpred: a condition-specific RNA-editing prediction mannequin from RNA-seq knowledge. BMC Genomics 17, 5 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Di Tommaso, P. et al. Nextflow allows reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiran, A. M., O’Mahony, J. J., Sanjeev, Ok. & Baranov, P. V. Darned in 2013: inclusion of mannequin organisms and linking with Wikipedia. Nucleic Acids Res. 41, D258–D261 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramaswami, G. & Li, J. B. RADAR: a rigorously annotated database of A-to-I RNA enhancing. Nucleic Acids Res. 42, D109–D113 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mansi, L. et al. REDIportal: thousands and thousands of novel A-to-I RNA enhancing occasions from 1000’s of RNAseq experiments. Nucleic Acids Res. 49, D1012–D1019 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lorenz, R. et al. ViennaRNA Bundle 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments